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A bstract: In th is paper, we construct a new im plem entation of stochastic finite elem ent m ethods for
p artia l differential equations w ith  random  inputs. The basis functions of generalized polynom ial chaos are 
determ ined not by th e  usual notion of degree of a  m ultivariate polynom ial, bu t by th e  Euclidean degree. 
T hen th e  corresponding linear com bination of basis from th e  stochastic finite elem ent m ethods is obtained, 
where th e  coefficient m atrix  is sparse and  sym m etric. In  num erical experim ents considering stochastic 
diffusion and  H elm holtz equations, our approach w ith Euclidean degree of gPC  basis achieves a  b e tte r 
convergence ra te  th a n  ones w ith  to ta l degree.

Key Words: stochastic finite elem ent m ethods, p artia l differential equations w ith random  inputs, Euclidean 
degree

1 INTRODUCTION

Partial differential equations (PDEs) are the basic 
frameworks for modeling an enormous variety of com­
plex systems in both research and industry. Inputs of 
models, which are often formulated as random vari­
ables, describe the stochasticity of the system of in­
terest and the output of the model becomes a ran­
dom variable as well. Examples include the par­
tially observable diffusion in filtering problems [1, 2], 
the fluid viscosity in incompressible flow problems 
[3, 4, 5, 6], the random surfaces in acoustic scattering 
[7]. The spectral methods have been investigated and 
developed to conduct the uncertainty quantification 
for PDEs where the spectral methods mainly include 
the stochastic collocations method and the stochastic 
Galerkin method. The main theoretical underpinning 
of the work presented herein is generally referred to as 
stochastic finite element methods (SFEMs) [8, 9, 10]. 
We combine the stochastic discretisation technologies 
with a discretisation of finite element method (FEM) 
and generalized polynomial chaos (gPC) expansion 
[2, 11, 12] in the stochastic space.
Based on the Wiener-Hermite polynomial chaos ex­
pansion [13], gPC methods seek to expand the random 
process (multi-variate) to a series in terms of a family 
of polynomial basis and then truncate the expansion to 
a finite version [12, 14]. Note that the retained terms

are generally selected by making the usual notion of 
polynomial degree, namely the total degree, of every 
term less than a predetermined integer [3, 15]. How­
ever, there is a new concept about Euclidean degree 
of a multivariate polynomial, and it shows that the 
number of retained terms selected by Euclidean de­
gree does not exceed that of based on total degree for 
the same accuracy [16, 17]. Our interest is to combine 
the gPC methods with Euclidean degree in stochas­
tic space and propose a new SFEM, and the resulting 
method is highly efficient. On the application of two 
SPDEs problems, we demonstrate a good convergence 
rate of the retained terms selected by the Euclidean 
degree over the total degree.
This paper is organized as follows. In the next section, 
we introduce the SFEMs that contains our problem 
setting and the discretisation, and most importantly, 
the selection of basis functions with Euclidean degree 
in gPC. Section 3 provides empirical assessments of 
performance in two examples and the conclusions are 
in section 4.
2 STOCHASTIC FINITE ELEMENT METH­

ODS

In this section, we review the stochastic finite element 
methods [14, 15, 18] for PDEs. The SFEMs include 
three major steps [19, 20, 21]: firstly, convert the par­
tial differential problem into its variational formula;
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secondly, apply stochastic discretisation in both phys­
ical and stochastic spaces, which obtains a finite lin­
ear combination of stochastic basis functions; finally, 
adopt iterative method for fast solution schemes. This 
section mainly presents the problem setting and its 
discretisation, include the variational formulation of 
problem, discretisation and the selection of basis func­
tions in the stochastic space.

2.1 Problem Setup
Let D C Rd denote a physical domain which is 
bounded, connected and with a polygonal boundary 
dD, and x  € Rd denote physical variables, where d is 
the dimension of physical space. Let £ =  [£i,. . . ,  £m ] 
be a random vector, and assume the random vari­
ables £1 € r i , . . . ,  £m  € r m  are mutually independent, 
where r  is the image of the components £i and M  is 
the dimension of random vector. Then the image of £ 
is given by r  =  r 1 x . . . x  rM and the joint probability 
density function of £ is p(£) = p(£i) • p(£2) • • • p(£m ), 
where p(£i) is the probability density function of £i for 
i = 1, . . . ,  M. In this work, we consider the following 
PDE

-V  • (a(x, £)V u (x, £))- K2(x, £)u (x, £) = f  ̂ ,
V(x, £) € D x r

u(x, £)=g(x), V(x, £) € dDD x r  (!) 
du

a(x, £) —  = h(x), y(x, £) € dDN x r

where f  is the source function, g, h specify the bound­
ary conditions, they are all suitable deterministic func­
tions, du denotes the outward normal derivative of u 
on the boundary, k and a are coefficients as follows:

M M
a ( x , £ ) = ^ 2  am(x)£m, k(x ,£) = ^  kn(x)£n

m=0 n=0

where {am(x)}M=0 and {kn(x)}M=0 are real functions 
in physical domain, a0(x) = 1 and £0 = 1. Moreover, 
we assume that the Dirichlet boundary dD and the 
Neumann boundary D n satisfying

dD d U dDN = dD , dDD n dDN = %.

2.1.1 Variational Formulation

For simplicity, we assume the derivation of SFEMs for 
equation (1) satisfying homogeneous Dirichlet bound­
ary conditions only. For the non-homogeneous cases, 
there are more detailed derivations in [9, 11, 22].
Let us denote L 2(D) and Lp(r)  as the Hilbert spaces

L2(D) =  {v(x) : D ^  R 

L2p(r) = { g(£) : r  ^  R

v2(x) dx < to ,

f  p(£)g2(£) d£ < to} .

The inner products of these Hilbert spaces are given

by

(vi(x),V2(x))L2(D) = vi(x)v2 (x) dx,
J d

(g1(£) ,g2(£)) Lp(T) = P(£)g1(£)g2(£) d£,

and the according norm are

IMIl2(d) = ĵD v2( x ) dx j  , 

\\g\\Lp(r) = ( f r p(£)g2(£) d£

Next, the tensor space of L 2(D ) and Lp(T) is defined
as

2l2 (d )  ® Ll (r) = { w (x, £) w(x, £)= vi(x)gi(£)„

vi(x) € L2(D),gi(£) € Ll (r) ,n € N+

which is equipped with the inner product

(wl(x, £), w2(x, £))® = ̂ 2  (vi(x),vj (x))L2(D)(gi(£),gj(£  
i,j

Apparently, the inner product of L2(D) <g> L2p(r) can 
be represented as

(Wl(x, £),W2(x, £))® = p(£)Wl(x, £)W2(x, £) dx d£
r d

Furthermore, we define the constrained physical do­
main as

H, (D) := ^v € H 1(D) v \9d =  ^ ,

where H 1(D) is a Sobolev space defined as

H 1(D ) = { v € L2(D ) dM € L2(D ) , i € {1 , . . . , d} } .

Then the solution space can be written as 

W  = H1(D ) ® L2 p(T)
n

= {w (x ,£ ) w (x ,£ ) = N vi (x )gi(£),l
i= 1

Vi(x ) € Hl ( D) ,gt (£) € L2p( r ) ,n € N+ } .

Finally, the variational formula of (1) can be restated 
as: find u (x, £) € W  such that

(aVu, V w) ^ - ( ku, kw)^ = (f,w)®, Vw(x, £) € W. (2)

n

2.1.2 Discretisation

In order to discretize (2), we now seek for a finite­
dimensional subspace to approximate W . The dis­
cretisation formulation of the physical space Hq(D) 
and the random space Lp(r) can be written as

Vh = span{vs(x)}Nf1 C H ( D ) ,

S = span{$j(£)}N£1 c  L2p(Y),
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where vs(x), (£) are the basis functions of
H0(D) and Lp(r) respectively. Therefore, a
finite-dimensional subspace Wh can be defined as

Wh Vh C S span v(x)$(£) v e Vh, $  e s }.

The SFEM seeks an approximation uap(x, £) e Wh 
satisfying

(aV uap, Vw)® -  (Kuap, kw)® = (f ,  w)®, (3)

where the finite-dimensional solution uap(x, £) can be 
represented as

N, Nx
uap(x, £) := ujsvs(x)$ j (£), (4)

j = i S = i
where ujs is the target unknown coefficient. 
Combining (4) with(3), the discrete variational formu­
lation of (2) can be written as

A u  = b, (5)

where
M M M

A  = ^ 2  ® Ll - ^  C Qln, b = h C f .
l=0 l=0 n=0

In equation (5), C is Kronecker product, Gln e 
RN€xNx are stochastic matrixes, h  denotes a N - 
column vector, and they are defined as

Gln(j, i) = (Cl$j ,Cn$i)L̂ (T)
L l(S, t ) = (alVvs, Vvt)L2{D) ,

Qln(s,t) = (Klvs,Knvt)L2(D) , (6)
h(i) = ($i, 1)Lp(r) ,

f  (t) = (f , v t)L2(D)

where l,n e {0,1 , . . . , M } , j , i  e { 1 , . . . , Nt }, s,t e
{1, . . . ,  Nx}, and u  is a (NxN%)-column vector of which 
the definition is

u
Ui uij

, where Uj =
UN, _ uNxj

In fact, the matrix A  of linear system (5) can be pre­
sented as a form of block-structure

2.2 Selection of Basis Functions in Stochastic Space
As the derivation process shows, the way of selecting 
basis functions directly determine the performance of 
approximation. In this section, we discuss the selection 
of basis functions in the stochastic space and introduce 
the gPC methods with Euclidean degree [16, 17].

2.2.1 gPC with Euclidean degree

Let , . . . ,  Cm be independent random variables with 
probability density functions pi , . . . , p M , the image 
of them are r i , . . . ,  Tm respectively, and the ran­
dom vector £ is defined as £ =  [Ci^. . ^ M ]T- Ob­
viously, the probability density function of £ is p(£) = 
Pi(Ci) ••• Pm  (Cm  ), and the image is denoted as r  =
r  x • •• x r M ■
For an univariate Ci, the gPC basis functions are the 
orthogonal polynomials [14] satisfying

E [<kj(Ci)^k(Ci)] = Pi(Ci)^j(Ci)^k(Ci)dCi= 5jh,j,k e N+

where j, k are the order of the polynomials f j  and 
f k , Sjk is Kronecker’s delta and N+ is the set of non­
negative integers. Since the random variables are in­
dependent, the gPC basis functions of £ can be written 
as

$ h(£) =  $ki  (£i) • • • $ku (Cm  ̂  ki , . . . ,kM e

where k = [ki , . . . ,  kM]T is a multi-index. Denote the 
single-index corresponding to k as k, and it shows that

E [ $ (£)$h(£)] = j  P(£)$j(£)$k(£) d£ =  5j k ,

where
3jk ^ji ki  • • • $jsks $jk.

For a multi-variable function u(£), it can be approxi­
mated by a truncated gPC expansion

u(£) ~  ^  ak $ k (£), (8)
hez

( A i , i Ai,2 Ai,N, \
A 2 ,i A2,2 A2,N,

A =

\ A n ,,i A n, ,2 . . A n,,n, /
where each block Aj  k is a Nx x Nx matrix and j, k e 
{1, . . . ,N t} .
We can obtain the numerical solution uap(x, £) by 
solving the system (5). After that, the mean and 
variance of exact solution u(x, £) can also be approxi­
mated as

E[u(x, £)] «  E[uap(x, £)],
V [u(x, £)] «  V[uap(x ,£)].

where S is a multi-index set, $k is one of the gPC 
basis functions, and ah is the expansion coefficient. 
Since every multi-index is corresponding to a gPC 
basis function, the basis functions, retained in the 
truncated gPC expansion (8), is determined when the 
multi-index set S is set up. For notational conve­
nience, we construct the one-to-one mapping connect­
ing the multi-index basis functions with the single­
index ones. Table 1 shows an example of the graded 
lexicographic ordering with M  = 4 (M is the dimen­
sion of random vector). Obviously, how to choose S is 
an important issue. Next, we introduce different ways 
to select basis functions.
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Table 1: Example of a graded lexicographic ordering 
with M  =  4

\h\ single-index k multi-index k
0 1 (0,0,0,0)
1 2 (0,0,0,1)

3 (0,0,1,0)
4 (0,1,0,0)
5 (1,0,0,0)

2 6 (0,0,0,2)
7 (0,0,1,1)

For a monomial Ĉ 1 .. .  £ M , there are usually three 
kinds of degree, total degree, Euclidean degree and 
maximal degree [17], respectively as

Total degree: dx (k) =  ||fc||i,
Euclidean degree: d x (k) =  | |k |2,
Maximal degree: dM(k) =  ||k||o ,

where || • | 1, || • ||2 and || • 10 are the 1-, 2- and x -  
norms of the M -vector k = [k1, . . . ,  kM]T accordingly. 
For a general multivariate polynomial, its degree is 
defined as the maximum of the degrees in all nonzero 
monomial components. Furthermore, the definition of 
total degree and maximal degree can be found in many 
textbooks and papers [17, 23, 24], and the Euclidean 
degree in [16, 17].
By the definitions above, it is clear that the degree of 
multi-variable polynomial T&(£) is the same as that 
of d 1 • • • CM ■ The multi-index set S can be selected 
based on one kind of the degrees. For total degree, the 
selected multi-index set is denoted as ST, where ST is 
defined as

ST = {k|fc e Rm , k i , . . . , k M  e N+, dx (k) < p}.

Similarly, for Euclidean degree and maximal degree, 
the selected multi-index set are denoted as SE and 
SM separately, and they are defined as

SE = {k\k e Rm , k i , . . . , k M  e N+, d x (k) < p}. 
SM = {k\k e Rm , k i , . . . , k M  e N+, dM (k) < p}.

To further elaborate the construction of random space 
S, under the selection of basis functions with Eu­
clidean degree, let us take a example of uniform ran­
dom variables with M  = 2 and p =  3. That means, 
£ =  [T1,T2]T, and S  is a set of two-dimensional Leg­
endre polynomial chaos [14] whose degree is no more 
than 3. Every basis function in S  is equipped with a 
multi-index k = (k1,k2), where k1, k2 are the degrees 
of polynomials in £1 and £2 respectively. Denote the 
three spaces as ST , S E, S M associated with the selec­
tion of basis function with total, Euclidean, and maxi­
mal degree separately. Given the uni-variate Legendre 
polynomial of degrees 0,1,2,3 are Po(£i) = 1,P1(£i) = 
Ci,P2 (£i) = 3U2 - 1, Ps(Ti) =  5U3 -  2Ci for i e {1, 2},

then the multi-index sets of ST, S E, S M are

ST =  {(0,0), (0,1), (1,0), (0, 2), (1,1), (2,0), (0, 3), (1, 2),
(2.1) , (3,0)},

SE =  {(0,0), (0,1), (1,0), (0, 2), (1,1), (2,0), (0, 3), (1, 2),
(2.1) , (3,0), (2, 2)},

SM = {(0,0), (0,1), (1,0), (0, 2), (1,1), (2,0), (0, 3), (1, 2),
(2.1) , (3,0), (1, 3), (2, 2), (3,1), (2,3), (3, 2), (3, 3)}.

According to the multi-index sets, let us give the case 
of space S E here

ST =span{$i ( £ }10
j=1

= ^ 1,£2 ,£1 , ^ £2 2 -  ^ , ClC2, 2£12 -  2 , 2 C2 3 -  2 ^  

£1 • (2£2 2 -  2 ^ (2£12 -  2 ) ' C2 , 2£13 -  2 .

3 NUMERICAL RESULTS

To benchmark the proposed framework, we consider 
two test problems: the stochastic diffusion equation 
and the stochastic Helmholtz equation. In both prob­
lems, we show the convergence of SFEMs, associate 
with total degree and Euclidean degree of gPC basis 
in stochastic space, and a bi-linear finite element ap­
proximation in physical space.
To analyze the convergence of SFEMs, we define the 
relative errors of mean function and variance function:

errmean :—

errvariance :

||E[uap] -  E[Uef] ||2
||E [«Tef] ||2

g v [uap] -  V[uref] ||2 

| V[uref] ||2

(9)

where uref is the reference solution equipped with max­
imal degree in the way of selecting basis functions.

3.1 Stochastic Diffusion Equation 
Given a stochastic diffusion equation:

-V  • (a(x , £)V u(x , £)) =  f  (x ), (x , £) e D x ^,
u(x, £) =  g(x), (x, £) e dDD x r, 

a(x, £)Vu(x, £) • n  =  h(x), (x, £) e dDN x r ,

where the physical domain is D =  [-1,1] x [-1,1], the 
boundary conditions denotes dD, Dirichlet boundary 
condition is dDD =  [ - 1, 1] x { - 1 , 1}, and dDn  = 
dD\dDD■ Given x  =  (^1,^ 2), £ =  (C1, C2 , C:3,C4), and

a(x, £)

f (x )

g(x )
h(x )

4
10.1 + ^^[2.25 + 0.25 cos(kx1)]Cfc,

fc=1
2 x2 x22 x 1 x 2

8 ,
x 1,
gXl+X2
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Errors of mean w.r.t number of basis CPU time w.r.t errors of mean

Errors of variance w.r.t number of basis

Number of basis in stochastic space

Figure 1: Comparison Of Errors For Basis Selected By 
The Euclidean Degree And Total Degree In Stochastic 
Space.

Figure 2: Comparison Of The CPU Time For Basis 
Selected By The Euclidean Degree And Total Degree 
In Stochastic Space.

Figure 1 shows the relative errors of mean and variance 
with respect to the number of basis, where the rela­
tive errors of mean function and variance function are 
given in (9), and the basis functions in stochastic space 
are selected by satisfying total degree and Euclidean 
degree. Besides, we apply the same uniform spatial 
grid in physical space, and the reference solution in 
(9) is obtained by gPC method for setting the maxi­
mal degree d.M = 10. The linear system (5) is solved 
by conjugate gradient. The upper one in figure 1 shows 
that the relative errors of mean decrease quickly as the 
number of basis increasing and the relative errors ob­
tained by Euclidean degree is much quickly than by 
total degree and the relative errors of variance shows 
the same trend.
Figure 2 shows the CPU time with respect to errors of 
mean and variance of solution, where the CPU time in­
cludes the time for constructing the linear system (5) 
and solving that using conjugate gradient, the CPU 
time units are seconds. Besides, the mean and vari­
ance are obtained by SFEMs, where the basis functions 
in stochastic space are selected by satisfying total de­
gree and Euclidean degree. The upper one in Figure 2 
shows the CPU time increases as the errors mean go­
ing down, and the CPU time increases slower when 
the basis functions in stochastic space are selected by 
Euclidean degree than by total degree. Similarly, the 
lower one in Figure 2 shows the CPU time shows the 
same trend with respect to the relative errors of vari­
ance.
Table 2 shows the relative errors of mean and variance 
of solution with respect to the order of basis, where 
the basis functions are selected by satisfying the total 
degree and Euclidean degree. The reference solution is

obtained by setting Maximal degree dM = 10, and it is 
easily seen that the solver basis selected by Euclidean 
degree are much less than by total degree for the same 
accuracy.

3.2 Stochastic Helmholtz Equation 
Given a stochastic Helmholtz equation:

- V 2u(x, £) -  n2(x, £)u(x, £) =  f  (x), (x, £) e D x r  
u(x, £) =  0, (x, £) e dDu x T

where the physical domain is D = [-1,1] x [-1,1], and 
the pure Dirichlet boundary condition dD = d D p . 
Given x  = (xi , x2), £ =  (£1,6 ), and

k(x , £) =  ^  + 0.41 + 0.18(£i + £2)

+ 0.02 [ cos(xi)£i +sin(x2)£2],

Figure 3 shows the relative errors of mean and variance 
with respect to the number of basis with the same set­
ting as for solving stochastic diffusion equation except 
the maximal degree dM =  30. Furthermore, the trend 
of the relative errors of mean function and variance 
function are similar to Figure 1 and we skip the anal­
ysis for it.
Figure 4 shows the CPU time with respect to errors of 
mean and variance of solution and the detail analysis 
can refer to that of Figure 1.
Table 3 shows the relative errors of mean and variance 
of solution with respect to the order of basis, where 
the basis functions are selected by satisfying the total 
degree and Euclidean degree. The reference solution is
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Table 2: Error Estimator With Respect To Total Degree And Euclidean Degree
order of basis errmean of d T errmean of d E 6 r r Va r ia n c e  of d T err v a r ia n c e  of d E

1 0.0028 0.0028 0.4135 0.4135
2 6.0787 x 10-4 3.2637 x 10-4 0.1498 0.0903
3 1.5956 x 10-4 3.0520 x 10-5 0.0555 0.0140
4 4.7376 x 10-5 3.8859 x 10-6 0.0212 0.0025
5 1.5409 x 10-5 6.3517 x 10-7 0.0084 4.8319 x 10-4
6 5.4051 x 10-6 1.2881 x 10-7 0.0034 1.0557 x 10-4
7 2.0281 x 10-6 3.3548 x 10-8 0.0014 2.7387 x 10-5
8 8.0997 x 10-7 9.7839 x 10-9 6.1533 x 10-4 7.6549 x 10-6
9 3.4305 x 10-7 3.0671 x 10-9 2.7398 x 10-4 2.2730 x 10-6
10 1.5349 x 10-7 1.0437 x 10-9 1.2576 x 10-4 7.3632 x 10-7

Table 3: Error Estimator With Respect To Total Degree And Euclidean Degree
order of basis e r r m e a n  of d T e r r m e a n  of d E err v a r ia n c e  of d T e r r Va r ia n c e  of d E

1 0.0713 0.0713 0.7356 0.7356
5 0.0017 6.3373 x 10-4 0.0697 0.0314
10 2.3588 x 10-5 1.8685 x 10-6 0.0020 2.0412 x 10-4
15 3.5431 x 10-7 6.2159 x 10-9 4.5019 x 10-5 1.0530 x 10-6
20 5.5264 x 10-9 2.1489 x 10-11 9.4271 x 10-7 4.9309 x 10-9
25 8.8226 x 10-11 7.6249 x 10-14 1.8888 x 10-8 2.1913 x 10-11
30 1.4316 x 10-12 8.1489 x 10-16 3.6860 x 10-10 8.4303 x 10-14

Errors of mean w.r.t number of basis

Number of basis in stochastic space

CPU time w.r.t errors of mean

Figure 3: Comparison Of Errors For Basis Selected By 
The Euclidean Degree And Total Degree In Stochastic 
Space.

Figure 4: Comparison Of The CPU Time For Basis 
Selected By The Euclidean Degree And Total Degree 
In Stochastic Space.

obtained by setting Maximal degree d.M = 30, and it is 
easily seen that the solver basis selected by Euclidean 
degree are much less than by total degree for the same 
accuracy.

4 CONCLUSIONS

We have proposed a new implementation of gPC meth­
ods to improve the convergence rate when solving 
PDEs with random inputs. Our approach selects the 
basis functions by satisfying the Euclidean degree. 
The linear system is obtained through stochastic fi­

nite element methods and with the special properties, 
like the sparse and symmetric matrix in linear system, 
our algorithm employes the standard conjugate gradi­
ent to solve it. In the case studies, the performances 
demonstrate that our method is able to accelerate con­
vergence in both two test problems by the Euclidean 
degree.
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