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Abstract. The implementation of spectral Galerkin stochastic finite element approximation
methods for Helmholtz equations with random inputs is addressed in this work. The corre-
sponding linear systems are formulated, of which the coefficient matrices have a Kronecker
product structure. The sparsity of the matrices is analyzed and a mean-based preconditioner
is developed. Computational results suggest that the mean-based preconditioner is efficient
when the underlying stochastic Helmholtz problem is not too close to a resonant frequency.
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1. Introduction12

During the last few decades there has been a rapid development in efficient uncertainty13

quantification approaches for solving partial differential equations (PDEs) with random inputs.14

These random inputs typically arise from lack of knowledge or measurement of realistic model15

parameters, for example, permeability coefficients in diffusion problems [29,55], viscosity pa-16

rameters in incompressible flow problems [12, 42, 47, 49], and shape parameters in acoustic17

scattering problems [58]. In particular, stochastic Helmholtz equations currently gain a lot of18

interest, and this paper is devoted to investigating efficient solution strategies for them.19

The Helmholtz equation is the fundamental governing PDEs for modeling ocean acoustic,20

optic and electromagnetic problems [28,33,37,51]. When modeling acoustics wave problems,21

uncertainties typically come from refractive indices (or wave number parameters), source func-22

tions, and shapes of scattering surfaces. Elman et al. [14] first consider the Helmholtz equa-23

tions with random forcing functions and boundary conditions, and develop efficient multi-24

grid solvers for the corresponding stochastic finite element approximation. In the work by Xiu25

and Shen [58], generalized polynomial chaos (gPC) approximations [55, 56] (and see [30]26
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for polynomial chaos) based on stochastic collocation methods [3,54] are developed for prob-1

lems with uncertain scattering surface shapes. Tang and Zhou investigate the stochastic col-2

location method for scalar hyperbolic equations with a random wave speed and demonstrate3

that the rate of convergence depends on the regularity of the solutions [60]. After that, the4

studies [39, 40] consider stochastic wave numbers and impedance parameters, and develop5

multifidelity approaches for the corresponding stochastic optimization problems. The recent6

work [21, 22] considers stochastic refractive indices, and develops a Monte Carlo interior7

penalty discontinuous method based on a multimodal representation. Feng et al. develop8

an efficient stochastic Galerkin method for Maxwell’s equations with random input [23].9

In this work, we investigate spectral Galerkin stochastic finite element methods [2,30,52]10

for the stochastic Helmholtz equations, where uncertainties in the refractive indices are consid-11

ered. Specifically, we discretize the stochastic parameter space using gPC methods [55,56] and12

discretize the physical space using finite element methods [6, 15], which leads to linear sys-13

tems in Kronecker formulation [10,41,43]. We note that efficient iterative solvers for stochastic14

Galerkin linear systems in general are currently in rapid development, e.g., mean-based precon-15

ditioning methods [41,43], hierarchical preconditioners [47,48], and preconditioned low-rank16

projection methods [36], to name a few. However, to the authors’ knowledge, the performance17

of these preconditioned iterative methods has not been studied for the stochastic Helmholtz18

problems. In this paper we analyze the sparsity of the stochastic Galerkin linear systems as-19

sociated with stochastic Helmholtz problems, and investigate the corresponding mean-based20

preconditioning scheme.21

An outline of the paper is as follows. In the next section, we first present our problem22

setting and spectral Galerkin stochastic finite element approximation. After that, the sparsity23

of the underling linear systems is analyzed and a detailed formulation of the linear systems24

associated with uniform random inputs is presented. In Section 3, iterative methods and mean-25

based preconditioning are discussed. Numerical results are discussed in Section 4. Section 526

concludes the paper.27

2. The stochastic Helmholtz equation and its discretization28

Let D ⊂ Rd (d = 2, 3) denote a physical domain which is bounded, connected and with
a polygonal boundary ∂ D, and x ∈ Rd denote a physical variable. Let ξ be a vector which
collects a finite number of real-valued random variables. The dimension of ξ is denoted by N ,
i.e., we write ξ = [ξ1, . . . ,ξN ]T . The image of ξ is denoted by Γ and the probability density
function of ξ is denoted by π(ξ). In this paper, we consider the following stochastic Helmholtz
problem: find the unknown function u(x ,ξ) satisfying

−∇2u(x ,ξ)− κ2(x ,ξ)u(x ,ξ) = f (x ) ∀(x ,ξ) ∈ D× Γ , (2.1)

u(x ,ξ) = 0 ∀(x ,ξ) ∈ ∂ DD × Γ , (2.2)

∂ u
∂ n
− iκ(x ,ξ)u= 0 ∀(x ,ξ) ∈ ∂ DR × Γ , (2.3)
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where κ is the refractive index and takes values in R, i =
p−1, ∂ u/∂ n is the outward normal1

derivative of u on the boundaries, and the Dirichlet boundaries ∂ DD and the radiation (Som-2

merfeld) boundaries ∂ DR satisfy ∂ DD ∪∂ DR = ∂ D and ∂ DD ∩∂ DR = ;. The refractive index in3

(2.1) is assumed to have the following forms:4

κ(x ,ξ) =
N∑

m=0

κm(x )ξm, (2.4)

where {κm(x )}Nm=0 are real-valued deterministic functions, and we set ξ0 = 1 for convenience.5

To ensure the well-posedness of our problem, we assume that there exists a constant ε >
0, such that κ(x ,ξ) > ε for all (x ,ξ) ∈ D × Γ , and eigenvalues associated of deterministic
versions of (2.1) have modulus greater than ε. That is, for each realization of ξ, considering
the following deterministic Helmholtz eigenvalue problem (see [27,34,35])

−∇2u(x ,ξ)− κ2(x ,ξ)u(x ,ξ) = λ(ξ)u(x ,ξ) (2.5)

with boundary conditions (2.2)–(2.3), we collect all its eigenvalues (i.e., all values of λ(ξ) in6

(2.5)) into a set denoted by Λξ, and assume that |λ|> ε for all λ ∈ ∪ξ∈ΓΛξ.7

2.1. Variational formulation8

To introduce the variational form of (2.1)–(2.3), some notations are required. We first9

define the space of complex-valued functions that are square integrable,10

L2(D) :=

�
v : D→ C

���� ∫
D

vv̄ dx <∞
�

, (2.6)

and denote the (function) L2 norm by11

∥v∥2 :=

�∫
D

vv̄dx

�1/2

. (2.7)

We next define the space

H1
0(D) :=

�
v ∈ H1(D) | v = 0 on ∂ DD

	
,

where H1(D) is the complex-valued Sobolev space

H1(D) :=
�

v ∈ L2(D) , ∂ v/∂ x i ∈ L2(D), i = 1, . . . , d
	

.

As usual, for a given function g(ξ) : Γ → C, its expectation (mean value) is defined as

E
�
g(ξ)

�
:=

∫
Γ

π(ξ)g(ξ)dξ,



4 Guanjie Wang and Qifeng Liao

where π(ξ) is the probability density function of ξ.1

The solution and test function space can then be defined as

W := H1
0(D)⊗ L2

π(Γ )

:=
�

w(x ,ξ) : D× Γ → C | ∥w(x ,ξ)∥W <∞ and w|∂ DD×Γ = 0
	

,

where L2
π(Γ ) := {g : Γ → C | E[g ḡ] <∞} and the norm ∥ · ∥W is defined by ∥w(x ,ξ)∥2

W :=2 ∫
Γ
π(ξ)

∫
D|∇w|2 dx dξ.3

Following [22, 43, 53], the variational form of (2.1)–(2.3) can be written as: find u ∈ W ,4

such that5

E
�∫

D
∇u · ∇w̄−

∫
D
κ2uw̄− i

∫
∂ DR

κuw̄

�
= E

�∫
D

f w̄

�
, ∀w ∈W. (2.8)

2.2. Discretization6

A discrete version of (2.8) is obtained by introducing a finite-dimensional subspace W h to7

approximate W . Specifically, we first denote finite-dimensional subspaces of the corresponding8

stochastic and physical spaces by9

S = span
�
Φ j(ξ)

	Nξ
j=1 ⊂ L2

π(Γ ), V h = span {vs(x )}Nx
s=1 ⊂ H1

0(D), (2.9)

where Φ j(ξ) and vs(x ) refer to basis functions. We next define a finite-dimensional subspace
of the overall solution (and test) function space W by

W h := V h ⊗ S := span
�

v(x )Φ(ξ)
��v ∈ V h,Φ ∈ S

	
.

There are many choices for the bases in (2.9) corresponding to different discretization methods,10

e.g., piecewise linear functions [2, 6, 9, 15] and global orthogonal polynomials [5, 30, 45, 53].11

The global orthogonal polynomial approximations for the stochastic space consist of three main12

kinds: the polynomial chaos methods [29, 30], the generalized polynomial chaos methods13

[56], and the dynamically bi-orthogonal methods [7, 8, 38, 61]. In this paper, we focus on14

generalized polynomial chaos methods to discrete the stochastic parameter space and finite15

element methods for the physical space. We review the generalized polynomial chaos methods16

introduced by [55,57] in the following for completeness.17

As introduced in [55], a gPC approximation of the solution u(x ,ξ) is written as18

u(x ,ξ)≈ up(x ,ξ) :=
Nξ∑
j=1

u j(x )Φ j(ξ) , (2.10)

where S = {Φ j(ξ)}Nξj=1 is an orthogonal basis with respect to the inner product19

E
�
Φ j(ξ)Φk(ξ)

�
=

∫
Γ

π(ξ)Φ j(ξ)Φk(ξ)dξ . (2.11)
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For an one-dimensional random input with probability density functionπ(ξ), the basis func-
tions in (2.10) are Φ j(ξ) = ϕ j−1(ξ), j = 1, . . . , Nξ, where {ϕ j}Nξ−1

j=0 is a sequence of orthogonal
polynomials with respect to the inner product

E
�
ϕ j(ξ)ϕk(ξ)

�
=

∫
Γ

π(ξ)ϕ j(ξ)ϕk(ξ) dξ .

For more details about the orthogonal polynomials, see [1,45].1

For multi-dimensional random inputs (N > 1), supposing ξ1, . . . ,ξN are independent ran-2

dom variables, each stochastic basis function Φ j(ξ) for j ∈ {1, . . . , Nξ} is a product of N univari-3

ate orthogonal polynomials. More precisely, Φ j(ξ) = ϕ
(1)
j1
(ξ1) · · ·ϕ(N)jN

(ξN ), where {ϕ(i)k (ξi)}∞k=04

is the univariate orthogonal basis corresponding to ξi ’s probability density function πi(ξi)5

for i = 1, . . . , N . Each single-index j ∈ {1, . . . , Nξ} here can be represented by a multi-index6

j = ( j1, . . . , jN ), and | j |= j1+ · · ·+ jN specifies the total degree of Φ j(ξ). To exactly define each7

Φ j(ξ), a bijection from single index to multi-index are introduced, i.e.,8

Mb : j←→ ( j1, . . . , jN ). (2.12)

Once the bijectionMb is specified, Φ j(ξ) is then determined. A popular choice is arranging the9

multi-index j in graded lexicographic order [53]. That is, if |i| > | j |, or |i| = | j | and the first10

nonzero entry in the difference i − j is positive, we setM−1
b (i)>M−1

b ( j).11

Following [59], for a given integer (the gPC order) p > 0, the gPC approximation (2.10)12

can be rewritten in the following multi-index form13

up(x ,ξ) =
Nξ∑
j=1

u j(x )Φ j(ξ) =
p∑
| j |=0

u j (x )Φ j (ξ), | j |= j1 + · · ·+ jN , (2.13)

where Nξ =
�N+p

p

�
(see [55]).14

For the spatial point of view, each u j(x ) can be approximated by15

u j(x )≈
Nx∑

s=1

u jsvs(x ), vs(x ) ∈ V h, (2.14)

where {vs(x )}Nx
s=1 refers to a finite element basis of V h. Combining (2.10) and (2.14), the16

overall approximation of the solution u(x ,ξ) is written as17

uph(x ,ξ) :=
Nξ∑
j=1

Nx∑
s=1

u jsvs(x )Φ j(ξ) . (2.15)

The unknown coefficients u js for j = 1, . . . , Nξ and s = 1, . . . , Nx in (2.15), can be obtained18

through solving the following linear system (with size Nx Nξ × Nx Nξ)19
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Au = b , (2.16)

where

A= G00 ⊗ K −
N∑

l=0

N∑
m=0

Glm ⊗Mlm −
N∑

l=0

iGl0 ⊗ Ll ; (2.17)

b = h⊗ f . (2.18)

In (2.17)–(2.18), ⊗ denotes Kronecker tensor product and

h( j) = E
�
Φ j(ξ)

�
, f (s) =

∫
D

f vs dx , (2.19)

Mlm(s, t) =

∫
D
κlκmvsvt dx , Ll(s, t) =

∫
∂ DR

κl vsvt ds, (2.20)

Glm( j, k) = E
�
ξlξmΦ j(ξ)Φk(ξ)

�
, K(s, t) =

∫
D
∇vs · ∇vt dx , (2.21)

where l, m= 0, 1, . . . , N ; j, k = 1, . . . , Nξ and s, t = 1, . . . , Nx .1

Based on the above discussion and following [43], (2.16) can be rewritten as the following2

block form3

A=


A11 A12 . . . A1Nξ
A21 A22 . . . A2Nξ

...
...

. . .
...

ANξ1 ANξ2 . . . ANξNξ

 , u =


u1
u2
...

uNξ

 , b =


b1
b2
...

bNξ

 , (2.22)

where each A jk for j, k = 1, . . . , Nξ is a Nx × Nx matrix.4

Once the approximation uph(x ,ξ) (see (2.15)) is obtained through solving (2.16), the mean5

function of the solution can be approximated by6

E
�
u(x ,ξ)

�≈ E �uph(x ,ξ)
�

, (2.23)

and the variance function of the solution can be approximated by7

Var(u(x ,ξ))≈ Var
�
uph(x ,ξ)

�
:= E

���uph(x ,ξ)−E �uph(x ,ξ)
���2� . (2.24)

2.3. Sparsity of the coefficient matrix8

As presented in (2.17) and (2.22), the coefficient matrix A can be written as a block matrix,9

while each block has the same sparsity pattern as the corresponding deterministic problem [43].10

We note that the general sparsity and structural properties of the coefficient matrix are studied11
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in [19]. In the setting of the stochastic Helmholtz problem considered in this paper, for even1

weight functions, the number of nonzero entries of Glm for l = 1, . . . , N and m = 0 are given2

in [19]. We in the following investigate more general cases—the sparsity of Glm for l, m =3

0, 1, . . . , N and the overall sparsity of the coefficient matrix A.4

To assess the number of the nonzero blocks of A (see (2.22)), the following matrix is defined

Ĝ( j, k) =

¨
1, if there exist l, m ∈ {0, 1, . . . N} such that Glm( j, k) ̸= 0

0, otherwise
,

where j, k = 1, . . . , Nξ. It is clear that the number of nonzero blocks of A is less or equal to the
number of nonzero entries of Ĝ above, and we next count nonzero entries of Ĝ. Without loss
of generality, we hereafter suppose the univariate basis functions are orthonormal, i.e.,∫

πi(ξi)ϕ j(ξi)ϕk(ξi) = δ jk, i = 1, . . . , N ,

where δ jk is the Kronecker delta function.5

For the case l = m = 0, G00( j, k) =
∏N

i=1δ ji ki
for j, k = 1, . . . Nξ, where ( j1, . . . , jN ) and6

(k1, . . . , kN ) are the multi-indices corresponding to j and k. The nonzero terms are those with7

indices j, k satisfying | ji − ki|= 0 for i ∈ {1, . . . N}.8

When either l or m is zero, we consider the case G0l( j, k) = Gl0( j, k) = E
�
ξlϕ

(l)
jl
(ξl)ϕ

(l)
kl
(ξl)

�∏N
i=1,i ̸=l δ ji ki

,9

with l > 0. Since ϕ(l)jl
(ξl) is orthogonal to the polynomials of degree less than jl , G0l( j, k) ̸= 010

holds, i.e. Ĝ( j, k) = 1, only if the indices j, k satisfying | jl − kl | ≤ 1 and ji = ki for i ∈11

{1, . . . , N} \ {l}, where ( j1, . . . , jN ) and (k1, . . . , kN ) are the multi-indices corresponding to j12

and k.13

When l = m> 0, Gl l( j, k) = E
�
ξ2

l ϕ
(l)
jl
(ξl)ϕ

(l)
kl
(ξl)

�∏N
i=1,k ̸={l}δ ji ki

. In this case, Gl l( j, k) ̸=14

0 holds, i.e. Ĝ( j, k) = 1, only if | jl − kl | ≤ 2 and ji = ki for i ∈ {1, . . . , N} \ {l}.15

When l ̸= m and lm ̸= 0, Glm( j, k) = E
�
ξlϕ

(l)
jl
(ξl)ϕ

(l)
kl
(ξl)

�
E
�
ξmϕ

(m)
jm
(ξm)ϕ

(m)
km
(ξm)

�∏N
i=1,i ̸={l,m}δ ji ki

.16

In this case, Glm( j, k) ̸= 0 holds, i.e. Ĝ( j, k) = 1, only if | jl − kl | ≤ 1 and | jm − km| ≤ 1 and17

ji = ki for i ∈ {1, . . . , N} \ {l, m}.18

In summary, Ĝ( j, k) ̸= 0 holds if and only if one of the following three statements holds19

true20

(a) ji = ki for i ∈ {1, . . . N};21

(b) for each l ∈ {1, . . . , N}, | jl − kl |= 1, 2, and ji = ki for i ∈ {1, . . . , N} \ {l};22

(c) for each pair l, m ∈ {1, . . . , N} with l ̸= m, | jl − kl | = 1, | jm − km| = 1 and ji = ki for23

i ∈ {1, . . . , N} \ {l, m}.24

The number of indices that satisfy case (a) equals to the number of solutions of the following
problem: find non-negative integers j1, . . . , jN , such that

j1 + · · ·+ jN ≤ p.



8 Guanjie Wang and Qifeng Liao

The number of solutions for the above equation can be computed by the stars and bars method1

[20], and equals
�N+p

p

�
.2

For case (b), the situation that | jl − kl | = 1 and ji = ki (i ∈ {1, . . . , N} \ {l}) is studied
in [19]. To simplify the analysis, we use a different counting method. In the following, we take
jl = kl + 1 and ji = ki (i ∈ {1, . . . , N} \ {l}) as an example to demonstrate the method. Since
the total degree of each gPC basis function is equal to or smaller than p, the multi-index of j
satisfies

j1 + · · ·+ jl + · · ·+ jN ≤ p,

or equivalently
j1 + · · ·+ (kl + 1) + · · ·+ jN ≤ p,

where j1, . . . , kl , . . . , jN are non-negative integers. Thus the number of index pairs j, k satisfying
jl = kl + 1 and ji = ki (i ∈ {1, . . . , N} \ {l}) equals to the number of solutions of the following
problem: find non-negative integers j1, . . . , kl , . . . , jN , such that

j1 + · · ·+ kl + · · ·+ jN ≤ p− 1.

By the stars and bars method, this number is
�N+p−1

p−1

�
. As discussed above, the total number of

indices that satisfy (b) is

2N
�

N + p− 1
p− 1

�
+ 2N

�
N + p− 2

p− 2

�
,

For case (c), the counting method is similar and we take jl = kl + 1, jm = km + 1 and
ji = ki (i ∈ {1, . . . , N}\{l, m}) as an example. Since the total degree of each gPC basis function
is equal to or smaller than p, the multi-index of j satisfies

j1 + · · ·+ jl + · · ·+ jN ≤ p,

or equivalently
j1 + · · ·+ (kl + 1) + · · ·+ (km + 1) + jN ≤ p,

where j1, . . . , kl , . . . , km, . . . , jN are non-negative integers. Thus the number of index-pairs j, k
satisfying jl = kl + 1, jm = km + 1 and ji = ki (i ∈ {1, . . . , N} \ {l, m}) equals to the number
of solutions of the following problem: find non-negative integers j1, . . . , kl , . . . , km, . . . , jN , such
that

j1 + · · ·+ kl + · · ·+ km + · · ·+ jN ≤ p− 2.

By the stars and bars method, this number is
�N+p−2

p−2

�
. As discussed above, the total number of3

indices that satisfy (c) is†
4

(N2 − N)
�

N + p− 2
p− 2

�
+ (N2 − N)

�
N + p− 1

p− 1

�
†When p = 1, we define

�N+p−2
p−2

�
= 0.
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Thus the total number of nonzero entries in the matrices Ĝ, i.e. the number of nonzero1

blocks in coefficient matrix (see (2.22)), is at most2

(N2 + N)
��

N − 1+ p
p− 1

�
+
�

N − 1+ p− 1
p− 2

��
+
�

N + p
p

�
=
�
(N2 + N)

N + 2p− 2
N + p− 1

p
N + p

+ 1
��

N + p
p

�
≜ Cξ

�
N + p

p

�
= CξNξ,

(2.25)

where

Cξ =
�
(N2 + N)

N + 2p− 2
N + p− 1

p
N + p

+ 1
�
< 2(N2 + N) + 1.

It is clear that, Cξ is typically much smaller than Nξ =
�N+p

p

�
when N and p are not too small.3

Values of the ratio Cξ/Nξ are shown in Figure 1, where it can be seen that the ratio values4

decrease quickly as N and p increase.

0 2 4 6 8 10 12 14 16 18 20

10
−3

10
−2

10
−1

10
0

p

C
ξ
/N

ξ

 

 

N=1

N=2

N=3

N=4

N=5

Figure 1: The sparsity of blocks.

5

Next, as discussed in [43], each nonzero block of A in (2.22) has the same sparsity pattern6

as the corresponding deterministic problem. When using standard finite element methods to7

discretize the physical space D, the number of nonzero entries of each block can typically be8

written as Cx Nx with Cx ≪ Nx and Cx is independent of finite element degrees of freedom, for9
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example, Cx = 9 for bilinear rectangular finite elements [15]. Thus, the number of nonzero1

entries of A is at most Cx CξNx Nξ and can be written as O(Nx Nξ) (since Cx ≪ Nx and Cξ≪ Nξ2

as discussed above). Considering its size (Nx Nξ × Nx Nξ), the matrix A is sparse, and it is of3

interest to develop iterative linear solvers to solve (2.16) with a cost O(Nx Nξ) [15,44], and we4

will discuss this again in Section 3.5

2.4. Detailed discrete formulation for uniform inputs6

For any distribution, once the coefficients of the three-term recurrence relation (??), i.e.7

α j ,β j , is known, the matrices Glm and vectors h can be calculated analytically. Specifically, in8

this section, we give the formulation for independent identically distributed uniform random9

inputs.10

For a uniform distribution ξ in [−1, 1], the probability density function is π(ξ) = 1/2. It is
well known that the Legendre polynomials form an orthogonal basis in [−1, 1] with respect to
the probability density function π(ξ) = 1/2. Normalizing the Legendre polynomials, we obtain
the three-term recurrence relation for the orthonormal polynomial bases, i.e,

ϕi+1(ξ) =

p
(2i + 1)(2i + 3)

i + 1
ξϕi(ξ)− i

p
2i + 3

(i + 1)
p

2i − 1
ϕi−1(ξ),

where ϕ0(ξ) = 1 and ϕ1(ξ) =
p

3ξ.11

By the definition of h and Glm, we have

h( j) = E
�
Φ j(ξ)

�
=

� N∏
i=1

E
�
ϕ ji (ξi)

��
=

�
1, if ji = 0,

0, otherwise;

if l = m= 0,
G00 = I;

if either l or m equals zero (i.e., lm= 0 and l +m> 0),

G0l( j, k) = Gl0( j, k) = E[ξlΦ j(ξ)Φk(ξ)]

=

 
N∏

i=1,i ̸=l

E
�
ϕ ji (ξi)ϕki

(ξi)
�!
E
�
ξlϕ jl (ξl)ϕkl

(ξl)
�

=



jlq
4 j2l − 1

N∏
i=1,i ̸=l

δ ji ki
, if kl = jl − 1,

klq
4k2

l − 1

N∏
i=1,i ̸=l

δ ji ki
, if jl = kl − 1,

0, otherwise;
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if l = m> 0,

Gl l( j, k) = E[ξ2
l Φ j(ξ)Φk(ξ)]

=

 
N∏

i=1,i ̸=l

E
�
ϕ ji (ξi)ϕki

(ξi)
�!
E
�
ξ2

l ϕ jl (ξl)ϕkl
(ξl)

�

=



�
( jl + 1)2

(2 jl + 1)(2 jl + 3)
+

j2l
4 j2l − 1

� N∏
i=1,i ̸=l

δ ji ki
, if jl = kl ,�

1p
(2 jl + 1)(2 jl − 3)

jl( jl − 1)
2 jl − 1

� N∏
i=1,i ̸=l

δ ji ki
, if kl = jl − 2,�

1p
(2kl + 1)(2kl − 3)

kl(kl − 1)
2kl − 1

� N∏
i=1,i ̸=l

δ ji ki
, if jl = kl − 2,

0, otherwise;

if l ̸= m and lm ̸= 0,1

Glm( j, k) = Gml( j, k) = E[ξlξmΦ j(ξ)Φk(ξ)]

=

 
N∏

i=1,i ̸={l,m}
E
�
ϕ ji (ξi)ϕki

(ξi)
�!

×E �ξlξmϕ jl (ξl)ϕ jm(ξm)ϕkl
(ξl)ϕkm

(ξm)
�

,

=



 
jlq

4 j2l − 1

jmÆ
4 j2m − 1

!
N∏

i=1,i ̸={l,m}
δ ji ki

, if

�
kl = jl − 1
km = jm − 1

, 
jlq

4 j2l − 1

kmÆ
4k2

m − 1

!
N∏

i=1,i ̸={l,m}
δ ji ki

, if

�
kl = jl − 1
jm = km − 1

, 
klq

4k2
l − 1

jmÆ
4 j2m − 1

!
N∏

i=1,i ̸={l,m}
δ ji ki

, if

�
jl = kl − 1
km = jm − 1

, 
klq

4k2
l − 1

kmÆ
4k2

m − 1

!
N∏

i=1,i ̸={l,m}
δ ji ki

, if

�
jl = kl − 1
jm = km − 1

,

0, otherwise.

Finally, combining the above results with (2.12) and (2.17)–(2.18), the linear system (2.16)2

can be formed for uniform random inputs.3
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3. Iterative methods for the linear system1

As discussed in Section 2.2, discretization of the Helmholtz problem (2.1)–(2.3) results in
the sparse linear system Au = b (see (2.16)), where A and b are defined through (2.17) and
(2.18). When high solution accuracy is required, the size of the matrix A can be large. In this
section, we discuss efficient iterative methods to solve this kind of large sparse linear systems.
In particular, we focus on Krylov subspace methods [15,17,31], of which the main methodology
is to project the linear system (2.16) into a consecutively constructed Krylov subspace defined
as

Km(A, r (0)) = span{r (0), Ar (0), A2r (0), . . . , Am−1r (0)},
where2

r (0) = b− Au(0) (3.1)

with u(0) a given initial guess.3

When the system matrix is symmetric and positive definite, the conjugate gradient (CG)4

method (a kind of Krylov subspace method) [32] is a popular choice, which in general only uses5

three vectors in memory and minimizes the error in the A-norm. However, the linear system6

considered in this paper (see (2.16)) is complex-symmetric (not Hermitian), such that directly7

using CG method may not lead to a convergent algorithm. As discussed in [44], methods that8

are based on the Lanczos bi-orthogonalization procedure can be used for non-symmetric and9

nonsingular matrices, such as the bi-conjugate gradient (Bi-CG) method [24] and its variants10

[46,50]. Since the Bi-CG methods may not be stable for non-Hermitian linear systems [16,25],11

Freund and Nachtigal proposed the quasi-minimal residual (QMR) method [25] which is more12

robust for these linear systems. In this paper, we focus on the QMR method [25, 26], and13

a bi-conjugate gradient stabilized (Bi-CGSTAB) method (a variant of Bi-CG method [50]) for14

comparison. Our implementation is based on the MATLAB functions qmr and bicgstab for the15

QMR method and the Bi-CGSTAB method respectively.16

To reduce the number of iterations, preconditioners are typically required when using iter-17

ative methods. As the preconditioning framework discussed in [15,44], instead of solving the18

original problem (2.16), we solve the following problem19

P−1
1 AP−1

2 ũ = P−1
1 b, where ũ = P2u. (3.2)

The nonsingular matrices P1 and P2 are called preconditioners, and the linear systems Pi x = b20

for i = 1, 2 are expected to be inexpensive to solve. An efficient preconditioner corresponds to21

well-clustered eigenvalues that are not too close to the origin [18].22

Following the framework introduced in [29,41,43], we in the following construct a mean-23

based preconditioner for the stochastic Helmholtz equation. To start with, we denote the mean24

value of ξ by ξ(0). We next construct the following matrix25

P = G00 ⊗ (K +Mp + iLp) (3.3)
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where G00, K are defined in (2.21) and for s, t = 1, . . . , Nx ,1

Mp(s, t) =

∫
D
κ2
�
ξ(0)

�
vsvt dx , Lp(s, t) =

∫
∂ DR

κ
�
ξ(0)

�
vsvt ds. (3.4)

The mean-based preconditioners herein are defined through setting P1 = P and P2 = I in (3.2).2

In addition, to start the iterative solving procedure, we set an initial guess u(0) = P−1b in (3.1).3

At each iteration step, the following equation needs to be solved4

P x̂ = ŷ , (3.5)

where

x̂ =


x̂1
x̂2
...

x̂Nξ

 , ŷ =


ŷ1
ŷ2
...

ŷNξ

 , where x̂ i , ŷi ∈ CNx .

Since G00 = I is symmetric, solving (3.5) is equivalent to solving the following problem5

(K +Mp + iLp)X̂G00 = Ŷ , (3.6)

where
X̂ =

�
x̂1, . . . , x̂Nξ

�
and Ŷ =

�
ŷ1, . . . , ŷNξ

�
.

To compute the solution of (3.6), we only need to solve Nξ linear systems with size Nx × Nx ,6

which is much cheaper than directly solving (2.16) (whose size is Nx Nξ × Nx Nξ).7

4. Numerical results8

In this section, two test problems are considered. The first one considers the refractive index9

to be a random field, and the second one considers a problem close to a resonant frequency. In10

both test problems, we discretize in physical space using a bilinear finite element approximation11

[6,15], and our implementation is based on the IFISS [13] and the S-IFISS [4] packages.12

4.1. Test problem 1 (the refractive index modeled by a random field)13

In this test problem, the physical domain considered is [−1, 1] × [−1, 1], the boundary
conditions in (2.1)–(2.3) are set to ∂ DR = ∂ D and ∂ DD = ;. The refractive index in this test
problem is set to a truncated Karhunen–Loève (KL) expansion [11,30] of a random field with
mean function κ0(x ), standard deviation σ and covariance function Cov(x , y),

Cov(x , y) = σ2 exp
�
−|x1 − y1|

c
− |x2 − y2|

c

�
,
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where x = [x1, x2]T , y = [y1, y2]T and the correlation length is set to c = 4 . The KL expansion1

is expressed as2

κ(x ,ξ) = κ0(x ) +
N∑

i=1

κi(x )ξi = κ0(x ) +
N∑

i=1

Æ
λici(x )ξi , (4.1)

where {λi , ci(x )}Ni=1 are eigenpairs of Cov(x , y), N is the number of KL modes retained, and3

{ξi}Ni=1 are uncorrelated random variables. The error associated with truncation of the KL4

expansion depends on the amount of total variance captured, δK L := (
∑N

i=1λi)/(|D|σ2), where5

|D| denotes the area of D [30, 43]. In the following, we set κ0(x ) = 10, σ = 1. In addition,6

we set N = 4 such that δK L > 89%, and set the random variables {ξi}Ni=1 to be independent7

uniform distributions with range [−1, 1]. What is more, the source term in (2.1) is specified as8

f (x ) = 2(0.5− x2
1 − x2

2).
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Figure 2: Test problem 1: gPC method with order p = 10 (top) and Monte Carlo method with
106 samples (bottom).

9
Figure 2(a), Figure 2(b) and Figure 2(c) show gPC approximations of the mean and vari-10

ance functions of this test problem, where the order of gPC expansion is p = 10, a uniform11

33 × 33 grid is used to discretize the physical space, and the Bi-CGSTAB method with the12
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mean-based preconditioner (3.3) is used to solve the corresponding linear system (see (2.16)).1

In this paper, the stopping criterion for the iterative methods is based on the relative residual2

∥Au(k) − b∥/∥b∥, where ∥ · ∥ denotes the vector L2 norm and the superscript k denotes the3

iteration number, and iteration terminates when the relative residual is smaller than 10−8. In4

addition, the Monte Carlo method (see [54] for a formal presentation) is tested for compari-5

son. Figure 2(d), Figure 2(e) and Figure 2(f) show the results generated by the Monte Carlo6

methods, in which the number of samples is 106. From these figures, the results generated by7

the two methods are visually indistinguishable.8

To assess the accuracy of the gPC finite element approximation (2.15), we consider the9

relative mean and variance errors, which are defined through10

er rormean :=
∥E(uph)−E(uref)∥2

∥E(uref)∥2
, er rorvariance :=

∥Var(uph)− Var(uref)∥2

∥Var(uref)∥2
, (4.2)

where uref is a reference solution, and ∥ · ∥2 is defined in (2.7). For the Monte Carlo method,11

the relative mean and variance errors are defined through replacing uph in (4.2) by the mean12

and variance function estimates generated by the Monte Carlo method.13

Figure 3(a) and Figure 3(b) show the mean and variance errors of the gPC method and the14

Monte Carlo method for this test problem, where a uniform 33 × 33 spatial grid is used. To15

generate the reference solution, the gPC method with p = 10 is used, and the corresponding16

linear system is solved by preconditioned Bi-CGSTAB. Figure 3(a) shows that the errors of the17

gPC approximation decrease quickly as the gPC order increases. Compared with the Monte18

Carlo method, of which the errors are shown Figure 3(b), the gPC method is efficient—the19

errors of the gPC approximation with p = 2 are smaller than those of the Monte Carlo method20

with 106 samples. Figure 3(c) and Figure 3(d) show the the CPU times of the gPC method and21

the Monte Carlo method. For the gPC method, the CPU time includes the time for constructing22

the linear system and solving it using preconditioned Bi-CGSTAB method. For the Monte Carlo23

method, the CPU time includes the times for constructing and solving linear systems (using the24

MATLAB backslash solver) associated with deterministic problems at all input sample points.25

All results in this paper are obtained in MATLAB on a desktop with 3.60GHz Intel Core i7 CPU.26

From 3(c) and Figure 3(d), it is clear that to achieve a given accuracy, the gPC method requires27

significantly less CPU times than the Monte Carlo method.28

Table 1 shows the number of iterations and the CPU times of the preconditioned iterative29

methods (including the time for setting up the preconditioners and the time for iterations), as-30

sociated with different mesh sizes and gPC orders. It can be seen that the numbers of iterations31

are independent of the mesh size h and the gPC order p, and the numbers are small in general.32

Figure 4 shows the CPU times versus the number of unknowns (Nx Nξ). Since the solpe of the33

black line ( y = x) in the figure is 1, the CPU times (roughly) increase linearly as the number34

of unknowns increases, which is expected for preconditioned iterative methods.35
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Figure 3: Errors and CPU times of gPC and Monte Carlo for test problem 1, uniform 33× 33
spatial grid.
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Table 1: Numbers of iterations and CPU times (shown in brackets) in seconds for precondi-
tioned iterative solvers, test problem 1.

Iterative method h−1 p = 2 p = 4 p = 6 p = 8 p = 10

Bi-CGSTAB 16 8.5(0.36) 10(1.91) 10.5(6.35) 10.5(15.07) 11(31.88)
32 8.5(1.59) 10.5(9.83) 10.5(29.59) 10.5(68.69) 11(161.58)
64 8.5(10.78) 10.5(59.55) 10.5(181.17) 11(476.87) 11(975.86)

QMR 16 16(0.72) 19(3.74) 22(13.41) 21(30.13) 22(63.27)
32 16(3.27) 19(18.58) 21(61.76) 22(148.88) 22(346.83)
64 16(21.47) 19(110.59) 21(368.79) 22(982.89) 22(1975.09)

10 5 10 6 10 7

10 0

10 2

10 4

10 6

 slope = 1

Bi-CGSTAB 

QMR

Figure 4: CPU times for preconditioned iterative methods, test problem 1.

4.2. Test problem 2 (a problem close to a resonant frequency)1

In this test problem, we consider the refractive index in the form of2

κ(x ,ξ) = κ0 + κ1ξ, (4.3)
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where ξ is uniformly distributed in [−1, 1] and κi , i = 0, 1 are two constants which will be
specified in the following. A pure Dirichlet boundary condition (2.2) is applied, i.e. ∂ D = ∂ DD.
The eigenvalues of the corresponding eigenvalue problem

−∇2u(x ,ξ)−κ2(x ,ξ)u(x ,ξ) = λ(ξ)u(x ,ξ)

with boundary condition (2.2) (∂ D = ∂ DD) are1

λi, j(ξ) =
(i2 + j2)π2

4
− κ2(ξ), (4.4)

where i, j = 1, 2, . . . .2

The right hand side of (2.1) for this test problem is set to the normalized eigenfunction
corresponding to λ1,1, which is

f = cos(
πx1

2
) cos(

πx2

2
).

We note that the exact solution of this test problem can be written explicitly, which is3

u(x ,ξ) = f (x )/λ1,1(ξ), but we next solve this problem using the stochastic Galerkin method to4

test the performance of the gPC approximation and the mean-based preconditioning scheme.5

When κ(ξ) takes the values of (
p

i2 + j2π)/2 (i.e., λi, j = 0 in (4.4)) for i, j = 1, 2, . . ., the6

solution of the deterministic version of this test problem is not unique, which is called reso-7

nance. We focus on the situation that κ can be close to the first resonant frequency π/
p

2.8

Specifically, we set κ0 = π/
p

2+0.41 and consider the following two cases of κ1 (see (4.3) for9

the definitions of κ0 and κ1):10

• κ1 = 0.1, with |λ1,1(ξ)| ∈ [1.47, 2.53] for ξ ∈ [−1, 1];11

• κ1 = 0.4, with |λ1,1(ξ)| ∈ [0.04, 4.26] for ξ ∈ [−1, 1].12

It is clear that the stochastic Helmholtz problem (2.1)–(2.3) associated with κ1 = 0.1 is away13

from resonance, while the problem associated with κ1 = 0.4 is close to resonance.14

Figure 5 shows the mean and variance errors (defined in (4.2)) for this test problem, where15

a uniform 33 × 33 spatial grid is used. To generate the reference solutions for both cases16

(κ1 = 0.1 and κ1 = 0.4), the gPC method with order p = 100 is used, and the corresponding17

linear systems are solved by preconditioned Bi-CGSTAB. Figure 5(a) shows that, the mean18

and variance errors of the gPC approximation decrease quickly as the gPC order increases for19

the problem that is away from resonance (κ1 = 0.1). However, from Figure 5(b), for the20

problem that is close to resonance (κ1 = 0.4), although the errors of the gPC approximation21

still decrease as the gPC order increases, they decrease much slower than those associated with22

κ= 0.1 (shown in Figure 5(a)).23

Figure 6 shows the number of iterations for preconditioned solvers for this test problem,24

where a 33 × 33 spatial grid is used. From Figure 6(a) (κ1 = 0.1 and the problem is away25
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(b) κ1 = 0.4

Figure 5: Errors of the gPC method for test problem 2, uniform 33× 33 spatial grid.

0 20 40 60 80 100

p

2

3

4

5

6

7

8

9

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Bi-CGSTAB   

QMR

(a) κ1 = 0.1

0 20 40 60 80 100

p

0

20

40

60

80

100

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Bi-CGSTAB   
QMR

(b) κ1 = 0.4

Figure 6: Numbers of iterations for preconditioned iterative methods for test problem 2, uni-
form 33× 33 spatial gird.

from resonance), the numbers of iterations of Bi-CGSTAB and QMR are small (only five for1

Bi-CGSTAB and nine for QMR), and they are independent of gPC order p. However, for the2

problem close to resonance, of which the results are shown in Figure 6(b), the numbers of itera-3

tions for both Bi-CGSTAB and QMR becomes large—for gPC order p = 60, both preconditioned4

Bi-CGSTAB and preconditioned QMR require around sixty iterations to achieve the residual5

stopping tolerance 10−8. Looking at Figure 6(b) in more detail, as the gPC order p increases,6
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the number of iterations of Bi-CGSTAB keeps increasing until p ≈ 50, while that of QMR keeps1

increasing until p ≈ 90. Note that the smallest magnitude of λ1,1(ξ) is much smaller when2

κ1 = 0.4 than that of κ1 = 0.1. Moreover, the solution is given by u(x ,ξ) = f (x )/λ1,1(ξ).3

These mean that the magnitude of variance function is much bigger when κ1 = 0.4 than that4

of κ1 = 0.1. When the variance function becomes large, the efficiency of the mean-based5

preconditioner can deteriorate.6

5. Conclusions7

This paper describes the mathematical framework and implementation of spectral stochas-8

tic finite element methods for solving the Helmholtz equation with random inputs. The sparsity9

of the corresponding linear system is analyzed, and iterative methods combined with the mean-10

based preconditioning scheme are investigated. From all examples considered, it can be seen11

that the gPC approximation and the mean-based preconditioning scheme are efficient when the12

stochastic Helmholtz problems are not too close to a resonant frequency, while both the gPC13

approximation and the mean-based preconditioner become less efficient for problems close to14

resonance. In addition, the numerical studies in this work only focus on low frequency waves15

(i.e., the refractive index is small in our setting). We will investigate more efficient gPC-based16

approximations and fast iterative solvers for both problems close to resonance and problems17

with high-frequency waves in our future work.18
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