第四章 中值定理及导数的应用

(1) $\sqrt{1+\tan x} - \sqrt{1+\sin x}$ (2) $\sqrt{1+2x} - \sqrt[3]{1+3x}$ (3) $x - \left(\frac{4}{3} - \frac{1}{3}\cos x\right)\sin x$

1. 当 $x \rightarrow 0$ 时,下列无穷小量

	④ $\mathrm{e}^{x^4-x}-1$ 从低阶到高阶排列顺序为().			
	(A) 1234	(B) 3124	(C) 4321	(D) 4213
2.	下列函数在给定区间上满足罗尔定理条件的是().			
	$\mathbf{(A)}\ f(x) = \begin{cases} e^{x-1}, \\ e, \end{cases}$	$0 < x \le 2$, $[0,2]$	(B) $f(x) = x^2 - 2x - 2x$	-3, [-1,3]
	(C) $f(x) = \frac{1}{(x-1)^4}$,	[0,2]	(D) $f(x) = x , [-1,]$	1]
3.	设函数 $f(x)$ 满足关系式 $f''(x) + [f'(x)]^2 = -e^x$, 且 $f'(0) = 0$, 则 ().			
	(A) $f(0)$ 是 $f(x)$ 的极大值			
	(B) $f(0)$ 是 $f(x)$ 的极小值			
	(C) 点 (0, f(0)) 是曲	线 $y = f(x)$ 的拐点		
	(D) <i>f</i> (0) 不是 <i>f</i> (<i>x</i>) f	的极值,点(0,f(0)) [{]	也不是曲线 $y = f(x)$	的拐点
4.	设函数 $f(x)$ 在点 x	ϵ_0 的 δ 邻域 $(x_0 - \delta, x_0)$	$(\epsilon_0 + \delta)(\delta > 0)$ 内三阶	导数 <i>f'''</i> (x) > 0, 且二
	阶导数值 $f''(x_0) = 0$, 则曲线 $y = f(x)$ ().			
	(A) 在 $(x_0 - \delta, x_0)$ 内是凹弧, 在 $(x_0, x_0 + \delta)$ 内是凸弧			
	(B) 在 $(x_0 - \delta, x_0 + \delta)$ 内是凸弧 (C) 在 $(x_0 - \delta, x_0)$ 内是凸弧, 在 $(x_0, x_0 + \delta)$ 内是凹弧			
	(D) 在 $(x_0 - \delta, x_0 + \delta)$ 内是凹弧			
5 .	函数 $f(x) = \arctan x + \operatorname{arccot} x = ($).			
	(A) 0	(B) 2 <i>x</i>	(C) $\frac{\pi}{2}$	(D) π

- **6.** 曲线 $y = e^{-\frac{1}{x}}$,则下列说法正确的是((A) 在 $(-\infty,0)$, $(0,+\infty)$ 内单调减少 (B) 没有极值 (C) 在 $(-\infty, \frac{1}{2})$ 内图形是下凹的 (**D**) 没有拐点 7. 函数 y = f(x) 在点 $x = x_0$ 处连续且取得极小值,则 f(x) 在 x_0 处必有(). (A) $f'(x_0) = 0$ **(B)** $f''(x_0) > 0$ (C) $f'(x_0) = 0 \perp f''(x_0) > 0$ **(D)** $f'(x_0) = 0$ 或不存在
- **8.** 设函数 f(x) 在 [a,b] 上有定义, 在开区间 (a,b) 内可导,则().
 - (A) 当 f(a)f(b) < 0 时, 存在 $x_0 \in (a,b)$, 使得 $f(x_0) = 0$ **(B)** 对任何 $x_0 \in (a, b)$, 有 $\lim_{x \to x_0} [f(x) - f(x_0)] = 0$
 - (C) 当 f(a) = f(b) 时, 存在 $x_0 \in (a, b)$, 使得 $f'(x_0) = 0$
 - (**D**) 存在 $x_0 \in (a, b)$, 使得 $f(b) f(a) = f'(x_0)(b a)$
- **9.** 函数 $y = x^3 + 12x + 1$ 在定义域内(
 - (A) 图形是凸的 (C) 单调减少 (D) 单调增加 (B) 图形是凹的
- 10. 下列函数在给定的区间上满足罗尔定理条件的是(

(A)
$$f(x) = x^2 - 5x + 6$$
, [2,3]

(B)
$$f(x) = \sin x$$
, $\left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$

(C)
$$f(x) = \sqrt{x^2} e^{x^2}$$
, $[-1, 1]$

(D)
$$f(x) = \begin{cases} x+1, & x < 5, \\ 1, & x \ge 5., \end{cases}$$
 [0,5]

- **11**. 当 $x \to 0$ 时, $x \sin x$ 是比 x^2 的 ().
 - (A) 低阶无穷小

(B) 高阶无穷小

(C) 等价无穷小

- (D) 同阶但非等价无穷小
- 12. 下列函数在给定区间上满足罗尔定理条件的是().

(A)
$$f(x) = \begin{cases} e^{x-1}, & 0 < x \le 2 \\ e, & x = 0 \end{cases}$$

(B)
$$f(x) = |x|, [-1,1]$$

(C)
$$f(x) = \frac{1}{(x-1)^4}$$
, [0,2]

(D)
$$f(x) = x^2 - 2x - 3$$
, $[-1,3]$

- **13.** 若 (0,1) 是曲线 $y = x^3 + (b-1)x^2 + c$ 的拐点,则有 () .
- (A) b = 1, c = 1 (B) b = -1, c = -1 (C) b = 1, c = -1 (D) b = -1, c = 1

14. 下列函数在给定的区间上满足罗尔定理的是().

(A)
$$f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$$
, [0,2]

(B)
$$f(x) = \sin x$$
, $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$

(C)
$$f(x) = xe^x [0, 1]$$

(D)
$$f(x) = \begin{cases} x+1, & x < 5 \\ 1, & x \ge 5, \end{cases}$$
, [0,5]

16. 函数
$$y = x - \ln(1 + x)$$
 在区间 内单调减少.

- 17. 已知点 (1,1) 是曲线 $y = x^2 + a \ln x$ 的拐点,则 a =_____.
- **18.** 设 f'(0) = 1, 则 $\lim_{h \to 0} \frac{f(2h) f(-h)}{h} =$ ______.
- **19.** 设 $f(x) = \ln \sin x, x \in [\frac{\pi}{6}, \frac{5\pi}{6}]$,则满足罗尔中值定理中的数值 $\xi =$ ______.
- **20.** 函数 $y = x^2 \frac{16}{x}(x < 0)$ 的最小值是 ______.
- **21.** 函数 $f(x) = x \ln x$ 的单调递减区间是_______.
- **22.** 函数 $f(x) = |x^2 3x + 2|$ 在区间 [-10, 10] 上的最大值为 ______.
- **23**. 函数 $y = 2x^3 6x^2 18x$ 的极大值是 _______.
- **24.** 函数 $y = x^2 \frac{54}{x}$ 在区间 $(-\infty, 0)$ 上的最小值是 ______.
- **25**. 设函数 f(x) = x(x-1)(x-2), 则方程 f'(x) = 0 的实根个数为
- **26.** 函数 $y = 2x^3 6x^2 18x$ 在区间 [-2,2] 上的最大值是_______.
- **27.** 求 $\lim_{x\to 0} (3e^{\frac{x}{x-1}}-2)^{\frac{1}{x}}$.
- **28.** 求函数 $f(x) = xe^x e^x + 1$ 的单调区间与极值及凹凸区间与拐点.
- **29.** 求极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$.

- **30**. 把一根长度为 a 的铁丝截成两段,其中一段折成正方形框架,另一段弯成圆周问当如何截取时,可使围成的正方形和圆的面积之和达到最小?
- **31.** 设 y = y(x) 是由方程 $y^2 + xy + x^2 + x = 0$ 所确定的满足 y(-1) = 1 的隐函数,求 y'(-1) 及 y''(-1),并计算极限 $\lim_{x \to -1} \frac{y(x) 1}{(x+1)^2}$.
- 32. (A 班) 计算极限 $\lim_{x\to 0} (e^x + x)^{\frac{2}{\sin x}}$.

计算极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)$$
.

- 33. 求 $y = (x-1)e^{\frac{\pi}{3} + \arctan x}$ 的单调区间和极值。
- **34.** 求 $\lim_{x\to 0} (1+\sin x^2)^{\frac{1}{1-\cos x}}$.
- **35.** 一房地产公司有 50 套公寓要出租, 当月租金定为 1000 元时, 公寓会全部租出去, 当月租金每增加 50 元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费 100 元的维修费. 问房租金定为多少时可获得最大收入?
 - (A 班) 需求函数为 $p = 10 \frac{Q}{5}$,
 - (1) 求当 Q = 20 时的边际收益,并说明其经济意义;
 - (2) 求当 p=6 时的收益弹性,并说明其经济意义.
- **36.** 求极限 $\lim_{x\to 0} (x+e^x)^{\frac{1}{3x}}$.
- **37**. 求曲线 $y = xe^{-x}$ 的凹凸区间与拐点.
- **38.** (1) 求函数 $y = f(x) = 2x^3 9x^2 + 12x$ 的单调区间与极值;
 - (2) 设 a 为实数,试讨论方程 f(x) = a 的不同实数解的个数.
- 39. 求极限 $\lim_{x\to +\infty} x^{\frac{2}{\ln(1+3x)}}$.
- **40**. 求曲线 $y = x^4 2x^3 + 1$ 的凹凸区间及拐点.
- **41.** 求极限 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.
- **42.** 求极限 $\lim_{x\to 1} x^{\frac{1}{1-x}}$.

- **43**. 问 a, b 为何值时, 点 A(1,3) 是曲线 $y = ax^3 + bx^2 + 1$ 的拐点?
- **44.** 某商场每年销售商品 a 件,分为 x 批采购进货.已知每批采购费用为 b 元,而未销售商品的库存费用为 c 元/件·年.设销售商品是均匀的,问分多少批进货时,才能使以上两种费用的总和为最省?
- **45.** 求极限 $\lim_{x\to 0} \frac{\sin x x \cos x}{x^2 \arcsin x}$.
- **46.** 求极限 $\lim_{r\to 0^+} x^{\sin x}$
- **47**. 某企业生产某种产品,固定成本 20000 元,每生产一单位产品,成本增加 100元. 已知总收益 R 是年产量 Q 的函数,即

$$R = R(Q) = \begin{cases} 400Q - \frac{1}{2}Q^2, & 0 \le Q \le 400\\ 80000, & Q > 400 \end{cases}$$

问每年生产多少产品时,总利润最大?最大利润是多少?

- **48.** 求极限 $\lim_{x\to 0^+} (\frac{1}{x})^{\sin x}$.
- **49**. 求曲线 $y = xe^{-x}$ 的出凸区间及拐点.
- **50.** 某企业生产产品 x 件时, 总成本函数为 $C(x) = ax^2 + bx + c$, 总收益函数为 $R(x) = px^2 + qx$, 其中 a, b, c, p, q > 0, a > p, b < q. 当企业按最大利润投产时, 对每件产品征收税额为多少才能使总税额最大?
- **51.** 若 0 < a < 1, 则对于 x > 0, 证明 $x^a ax \le 1 a$.
- **52.** 当 0 < a < b < 1 时, 证明不等式 $\frac{b-a}{\sqrt{1-a^2}} < \arcsin b \arcsin a < \frac{b-a}{\sqrt{1-b^2}}$.
- **53.** (A 班) 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)\cot \xi$.

设函数 f(x) 在 $[0,\pi]$ 上连续, 在 $(0,\pi)$ 内可导, 且 $f(0)=f(\pi)=0$. 证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi)=-f(\xi)$.

54. 证明: 当 $x \in (0, \frac{\pi}{2})$ 时, $\tan x > x + \frac{1}{3}x^3$.

(A 班) 设 f(x) 在 [a,b] 上可微,且 f(a) = f(b) = 0,试证明:在 (a,b) 内至少存在一点 ξ ,使 $f'(\xi) = 3f(\xi)$.

- **55.** 已知 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0,证明在区间 (0,1) 内至少有一点 c,使得 $f'(c)=-\frac{f(c)}{c}$.
- **56.** 若函数 f(x) 在 $(-\infty, +\infty)$ 内满足关系式 f'(x) = f(x), 且 f(0) = 1, 则 $f(x) = e^x$.
- 57. 证明: 当 x > 0 时, $(1+x)\ln^2(1+x) < x^2$.
- **58.** 设函数 f(x) 在 [0,2] 上连续, 在 (0,2) 内可导, 且 f(2) = 4. 试证存在一点 $\xi \in (0.2)$, 使得 $2\xi f(\xi) + \xi^2 f'(\xi) = 8$.